EuPIA Guidance on Migration
Test Methods for the evaluation of substances in printing inks and varnishes for food contact materials

2017-07-31
1st amendment, 2018-10-31
2nd amendment 2020-08-14
Table of Contents

1. Scope ... 3
2. Background .. 3
3. Definitions ... 4
4. Recommended methods ... 5
 4.1. “Worst case” – calculation and migration modelling .. 5
 4.2. Accelerated migration testing ... 6
 4.2.1 Preparation of test samples .. 6
 Printing and drying .. 6
 Storage and conditioning ... 8
 4.2.2. Selecting migration parameters .. 8
 Selection of migration cells ... 8
 Selection of testing conditions ... 9
 Definition of immersion/migration conditions ... 9
 Selection of immersion/migration conditions ... 10
 Specific test methods for DFC application .. 11
 4.3. Analytical identification and quantification ... 11
 Targeted analysis (IAS/NLS/NIAS) .. 11
 Non-targeted analysis (NLS/NIAS) .. 12
 4.4. Justified deviations from the recommended methods ... 14
 Changes which do not occur under worst foreseeable conditions of use 14
 Examples of physical changes to the printed test substrate ... 15
 Examples of chemical changes to the migrating compounds 15
5. References .. 15
6. List of abbreviations .. 17
 Annex A: Calculation of maximum possible migration; formula and example 18
 Annex B: Calculation of maximum possible migration: Digital printing applications 19
 Annex C: Storage/Conditioning of print samples .. 20
 Annex D: Typical examples of DFC application ... 21
 Annex E: Specific test methods for DFC application ... 22
1. Scope

This EuPIA Guidance document is an industry guideline for the evaluation of the migration of components of packaging inks applied to the surface of food packaging materials and articles intended to come into contact with food (for both direct and non-direct contact). It recommends testing in worst-case conditions (by a screening approach) and is not intended to replace compliance testing of the final printed Food Contact Materials.

The recommended testing methods for the evaluation of the migration of components have been defined in conjunction with food packaging regulations.

This document should be read in conjunction with other EuPIA documents on printing inks for food packaging, for instances the EuPIA GMP [1] and the EuPIA Guidance on the Risk Assessment of NIAS and Non-Listed Substances [2].

The ink itself shall not be tested as such since its composition may change during the printing process. In addition, the substrate greatly influences the migration properties of the components of the ink.

2. Background

Regulation (EC) No. 1935/2004 requires that the finished article for food contact materials must be tested and/or evaluated under real conditions of use. Screening tests can be based on experimental-analytical testing methods or on theoretical migration estimations via calculation or migration modelling.

Testing the inks, coatings and varnishes with model systems and conditions can only be considered as a screening tool and should be used only if worst-case calculation or migration modelling cannot be conducted due to missing information, or if the results of these calculations exceed the specific migration limits (SML) associated with components of the inks, coatings, and varnishes.

The specific methods of migration testing and analysis are described either in EU Regulations [3] on materials and articles in contact with foodstuffs or in international Standards [4] [5] [6], with the exception of the preparation of printed samples. For this purpose, substrates and simulants are recommended to check the migration behaviour of components of packaging inks, coatings and varnishes under worst-case conditions.

The draft JRC guideline [7] states: “As a matter of principle, screening approaches need always to be at least as conservative as the verification method. Therefore, test conditions which are at least as severe, should be applied. For an estimation of migration conservative theoretical considerations which overestimate migration are needed. As a logical consequence, screening tests can only be conclusive in that they demonstrate compliance, but they cannot demonstrate non-compliance. In the event of exceeding a migration limit by screening, compliance may be checked then by using a more appropriate verification test using food simulants or even foodstuffs. Since, from experience, screening results will be in most cases conclusive concerning positive compliance declaration, screening tests offer advantages over verification methods with regard to time and costs.”

The JRC guideline is only applicable to plastic materials and articles in the scope of the plastics regulation [3]. In the absence of harmonised regulations on other Food Contact Materials (FCMs) the conditions used in the Plastics Regulation are often also applied to non-plastic FCMs. However, plastic simulants and/or conditions may cause physical damage or changes to the non-plastic FCM leading to erroneous results. This is also true for printing inks (see below). Hence, testing conditions better suited to the specificity of each FCM needs to be proposed [8]. This document is aimed at providing specific guidance for printing inks for FCMs.
3. Definitions

Printing Ink
The term “printing ink”, or in short just “ink”, in this paper includes:
(a) mixtures of colourants with other substances which are applied on materials to form a graphic
or decorative design together with
(b) other coloured or uncoloured overprint varnishes/coatings or primers which are normally applied
in combination with (a) in order to enable the printed design to achieve specific functions such
as ink adhesion, rub resistance, gloss, slip/friction properties

Printing inks do not include coatings which are applied with the prime objective of enabling the material
or article to achieve a technical function such as heat sealing, barrier, corrosion resistance, as opposed
to a graphic effect, even though they may be coloured.¹

Non-Direct Food Contact (Non-DFC)
Non-Direct Food Contact inks are a subset of FCM inks where the ink is used on the non-food-contact
surfaces of food packaging and articles intended to come into contact with food. There is a potential for
migration of components from the ink/coating/varnish.

Direct Food Contact ink (DFC)
Direct Food Contact inks are a subset of FCM inks. A DFC ink is defined as an ink that is intended to
be, or can reasonably foreseeably be, in direct physical contact with food. For DFC applications the
diffusion path between ink/coating and food is short, and so there is a greater potential for migration.
DFC applications can be categorized according to the exposure probability (intentional/foreseeable)
and the potential duration of the application (short term/long term). Typical examples are given in annex
D.

Transient food contact is a specific type of DFC in which inks can foreseeably be in contact with food
for relatively short periods of time. The diffusion path between ink and food is short, but there is also a
very limited time in which migration can occur. In this situation the potential for migration exists but is
not as high as for long term DFC FCM’s

Migration
In the printing industry, when we refer to migration, this concept in its simplest form is the transfer of
components from the FCM into the foodstuff itself.

Transfer of printing ink components from a printed packaging material or article into food or food
simulant may occur either
• by direct migration from the ink printed on the food contact surface in situations, where the food
is directly in contact with the print
• by migration through the substrate
• via contact to the reverse side in a reel or stack (known as “set-off migration”) or
• by gas phase transfer.

¹ However, the migration test methods detailed out in the guidance can also be applied to coatings and varnishes
which are applied with the prime objective of enabling the material or article to achieve a technical function
such as heat sealing, barrier, or corrosion resistance.
As there are several different mechanisms of migration taking place, the assumption that the degree to which a printing ink component will migrate directly relates to the component’s molecular weight cannot be relied upon. Smaller molecules will likely migrate more readily than larger molecules, and molecules with a mass greater than 1000 Daltons (or 1500 Daltons for fluoropolymers) are generally considered to be of no concern as they are too large to be absorbed from the gastro-intestinal tract. However, there may be exceptions where a substance with a molecular weight of greater than 1000 Daltons will readily migrate and accordingly will have a Specific Migration Limit (SML) which will limit the acceptable level of migration.

Intentionally used Substances in printing inks for FCMs [2]

This covers all chemical substances which are intentionally used in the production and use of the printing ink and which have an intended and specific function within the final ink and without which the performance of the ink would change. These substances may be added as single components or as mixtures of various substances. The term “use” of raw materials or substances in inks in this paper means always that these raw materials or substances are added intentionally (IAS).

Non-Intentionally Added Substances in printing inks for FCMs (NIAS) [2]

Substances and raw materials used in the manufacture of printing inks may contain impurities originating from their manufacturing or extraction process. These impurities are non-intentionally added (NIAS) but present in the substance which is intentionally used in the manufacture of the printing ink. Further, during the manufacture and use of printing inks reaction and degradation products of used substances can be formed. These reaction and degradation products are non-intentionally present in the printing ink (NIAS).

Non-Listed Substances (NLS) [2]

NLS are substances which are not required to be listed according the current FCM legislation and in many cases not yet officially evaluated. According to the current legislation printing inks for FCM may contain substances which are not listed or fully evaluated. The safety of such substances needs to be demonstrated in accordance with internationally recognized scientific principles on Risk Assessment.

4. Recommended methods

4.1. “Worst case” – calculation and migration modelling

Migration testing can be replaced by the calculation of the maximum possible migration. A formula and an example for “Worst case” calculations are given in Annex A. For digital printing applications see Annex B. For coatings that undergo a significant change in composition during processing this worst case (total mass transfer) assumption is incorrect (e.g. UV and conventional offset).

The FCA (“Food Contact Additives” Sector Group of Cefic) guidance on the risk assessment of NIAS and NLS states “For predicting the migration of substances, mathematical modelling can be applied, which has been significantly developed in recent years. These tools have been validated for some of the commonly used plastics and provide an overestimation of the possible actual migration. For guidance on migration modelling JRC (Joint Research Centre) issued a guidance document” [9]. “Modelling on plastics has been accepted by EFSA as an option to calculate migration [10]. Modelling is only applicable under “non-swelling” conditions. For other materials, like paper and paperboard, the development of a modelling tool is in progress” [8].

There are a few companies who offer software systems for migration modelling (non-exhaustive list of tools) such as: INRA Safe Food Packaging Portal version 335, FABES MIGRATEST Software or AKTS-SML Software, FACET, among others.
4.2. Accelerated migration testing

4.2.1 Preparation of test samples

Printing and drying

For testing, printed samples should be used preferentially, which have been produced and dried under typical conditions of industrial practice. This is especially true if converting and/or drying has a considerable influence on the composition of the printing inks or varnishes, as for instance in reactive (UV, EB, 2-component systems) or solvent-based systems. Printed three-dimensional objects can also be tested (cups, in-mould-labelled plastic containers). Alternatively, the ink can be applied to the substrate under laboratory conditions, so that the printing and drying process resemble the reality as much as possible.

To demonstrate that a packaging ink is likely to meet industry requirements, the ink should be applied to the relevant substrate in such a way as to reproduce, as far as possible, the printing and drying processes which are used in practice. In addition, where the final packaging application is known, the composition of the resulting print (i.e. the identity/type of individual ink layers applied and their associated relative film weights) should reflect that application as closely as possible.

For a generic test, where the worst-case print scenario is not known, a representative film weight has to be used (see Table 1). Care should be taken when selecting the substrate used for the test sample, which should by preference be the material chosen for the actual application. In case this is not available, a worst-case substrate such as OPP (30 - 40 µm thickness) for plastic applications or fresh-fibre cardboard (200-300 g/m²) for typical cardboard, paper and corrugated fibreboard applications would be suitable, as neither are a sufficient barrier for most migratable substances.
Table 1: Model systems of printing inks (for 100% coverage). When the coverage is different, a factor should be applied accordingly

<table>
<thead>
<tr>
<th>Printing ink or varnish system</th>
<th>Substrate</th>
<th>representative film weight, dry [g/m²]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oil-/resin-based</td>
<td>conventional offset (absorption) printed with water-based overprint varnish (OPV)</td>
<td>cardboard</td>
</tr>
<tr>
<td>UV/EB-curing</td>
<td>UV/EB-offset</td>
<td>cardboard</td>
</tr>
<tr>
<td></td>
<td></td>
<td>PP-cup</td>
</tr>
<tr>
<td></td>
<td>UV/EB-flexo</td>
<td>BOPP</td>
</tr>
<tr>
<td></td>
<td>UV/EB-coating</td>
<td>cardboard</td>
</tr>
<tr>
<td></td>
<td>UV/EB-screen printing</td>
<td>PP</td>
</tr>
<tr>
<td></td>
<td>UV/EB-ink-jet</td>
<td>cardboard, BOPP</td>
</tr>
<tr>
<td>Solvent- or water-based</td>
<td>gravure</td>
<td>BOPP, cardboard</td>
</tr>
<tr>
<td></td>
<td>flexo</td>
<td>BOPP, paper or cardboard</td>
</tr>
<tr>
<td></td>
<td>2-component systems, solvent-based</td>
<td>BOPP</td>
</tr>
<tr>
<td></td>
<td>overprint varnish offset, water-based</td>
<td>cardboard</td>
</tr>
<tr>
<td></td>
<td>screen printing, solvent-based</td>
<td>PP</td>
</tr>
<tr>
<td></td>
<td>ink-jet</td>
<td>cardboard, BOPP</td>
</tr>
</tbody>
</table>

*For inkjet, there are many different technologies with different print limitations. It is recommended that the end user prints a sample which reproduces as typically as practicable the ink coverage required for the application. When considering a generic test, in which no particular end use is defined, it is recommended ‘test’ samples be printed as an area fill corresponding 100% coverage.

Applications, which are not covered by the models in Table 1 must be tested with appropriate formulations and testing conditions. It must be ensured that all elements of the production process are considered to allow for an accurate risk assessment (e.g. drying, curing conditions, stacking, wrapping, shaping, pasteurizing, sterilization, etc.). Applications such as metal printing, cup printing, or printing inks for packaging and food contact materials which are intended for higher temperatures or differing storage conditions fall into this category.

Print samples which have been produced and dried according to their typical industrial application may also be produced using other substrates and be tested with other simulants, as long as the model
system is equivalent and represents the major part of the practical application of the respective ink system.

Storage and conditioning

Conditioning of printed samples to be subjected to migration analysis is dependent on how the material is delivered; typically, the printed samples are either on a roll, as a stack of sheets or as three-dimensional objects. Printed samples originating from a roll or coming from a stack of sheets should be, upon arrival to the laboratory, cut to a suitable size (typically A4), stacked (print to non-print side, containing preferably 20 or more test specimens), and the stack should then be wrapped in aluminium foil. The aluminium foil should not contain any coating that can interfere with the subsequent analysis. Ideally, a “blank” stack of material should be wrapped separately in aluminium foil and should be subjected to the same conditioning and analysis as the printed samples under scrutiny. Samples originating from a roll of material do not need further conditioning if the roll of material has already been subjected to conditions typical of production. If possible, three-dimensional objects should be stacked and wrapped in aluminium foil in a manner like two-dimensional objects. If this is not possible, the printed samples should be wrapped in aluminium and subjected to temperatures and humidities either typical of production (if not already subjected to such) or as defined in Annex C.

When sampling for further analysis of a stack, the top and the bottom 5 layers should be discarded (for stacks containing more than 20 layers). Sampling is then done from the middle of the remaining substrates.

4.2.2. Selecting migration parameters

Selection of migration cells

Assorted designs of migration cells are shown in EN 13130-1:2004. The surface area to volume ratio is a crucial factor where there may be reduced migrant solubility. Therefore, a minimum ratio of 1 mL : 1 cm2 is recommended. For 95% ethanol, a reduced area to volume ratio can be used, as it is a stronger solvent for typical migrants.

Ethanolic solutions used over 10 d at 60°C can result in leakage from the migration cell; this leakage is mainly evaporative in nature. Minimum recovery of the simulant should be 80%.

It is important that the correct side of the sample is exposed to the simulant. For example, direct food contact applications require that the printed side is in contact with the simulant. Conversely, for non-direct food contact applications, the reverse side should be exposed to the simulant.
Selection of testing conditions

To define the appropriate conditions, it is required to determine the nature of the substrate and the type of contact (non-direct/direct) and the food properties:

- Define the type of substrate to be used
- Liquid resistant substrate?
- Simulant on non-printed side (see conditions in table 2)
- Define the type of contact
- Simulant on printed side (see conditions in table 2)
- Simulant on non-printed side (see conditions in table 2)
- Is it a DFC application?
- yes
- no
- Immersion in simulant (see conditions in table 3)
- no
- Simulant (MPPO) in contact with non-printed side

Definition of immersion/migration conditions

The worst-case simulants and testing conditions mentioned in tables 2 and 3 should be used, if the real case is not known explicitly, or if a worst-case testing is needed. Otherwise it is recommended to choose simulants and testing conditions that resemble the real case as close as possible.

If there is evidence that the simulants given in tables 2 and 3 do not represent worst-case conditions for specific migrants, a more appropriate simulant should be used (see section 4.4).

Alternatively, the Arrhenius equation can be used as a screening approach to calculate different time-temperature conditions as also mentioned in section 2.1.4 of Annex V of the Regulation (EU) No. 10/2011. The Arrhenius equation can only be used for plastics where the migration is controlled by diffusion and the polymer properties are not greatly affected by increasing temperatures for accelerated test conditions.
Selection of immersion/migration conditions

In this section worst-case simulants and testing conditions for migration tests (table 2) and immersion tests (table 3) are defined, which should be used, if the real case is not known explicitly, or if a worst-case testing is needed. Otherwise it is recommended to choose simulants and testing conditions that resemble the real case as close as possible. Short contact time is only relevant for DFC application.

A Migration conditions

Table 2: Worst Case migration (printed or non-printed side) testing conditions

<table>
<thead>
<tr>
<th>Food Type</th>
<th>Liquid - Moist</th>
<th>Dry</th>
</tr>
</thead>
<tbody>
<tr>
<td>Simulant</td>
<td>EtOH 95%*</td>
<td>MPPO***</td>
</tr>
<tr>
<td>Food contact time [d]</td>
<td>< 1</td>
<td>> 1</td>
</tr>
<tr>
<td>Food contact temperature [°C]</td>
<td>< 40</td>
<td>> 40</td>
</tr>
<tr>
<td>Testing temperature [°C]**</td>
<td>max 40</td>
<td>max 60</td>
</tr>
<tr>
<td>Testing time [d]**</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

* Other simulants can be used for some specific applications (see also justified deviations, section 4.4).
** The temperature and time of the testing conditions may be adapted to the real contact conditions
*** MPPO is also recommended as simulant for high-temperature applications [7]. However, MPPO is known to overestimate migration of some migrants compared to real food, and a reduction factor or measurement in real food might be needed for compliance measurements [11] [12].

Regulation (EU) No. 10/2011 specifies three different testing regimes (10 d at 40°C, 10 d at 50°C, and 10 d at 60°C) dependent on product storage conditions. The regulation also states that substrates should not be altered by the applied conditions [13]. If this is case, please refer to section 4.4.

B Immersion conditions

Table 3: Worst Case immersion testing conditions (based on EN 645, EN 647, EN 15519)

<table>
<thead>
<tr>
<th>Food Type</th>
<th>Liquid hydrophilic</th>
<th>Fatty (liquid or dry)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Simulant</td>
<td>Water</td>
<td>EtOH 95%**</td>
</tr>
<tr>
<td>Food contact time [d]</td>
<td>< 1</td>
<td>> 1</td>
</tr>
<tr>
<td>Food contact temperature [°C]</td>
<td>< 40</td>
<td>> 40</td>
</tr>
<tr>
<td>Testing temperature* [°C]</td>
<td>max 40</td>
<td>max 80</td>
</tr>
<tr>
<td>Testing time* [h]</td>
<td>24</td>
<td>24</td>
</tr>
</tbody>
</table>

* The temperature and time of the testing conditions may be adapted to the real contact conditions
** Other simulants can be used for some specific applications (see also justified deviations, section 4.4).
For immersion in organic solvents including special cases, testing conditions may need to be modified. Testing temperatures should not exceed the boiling point of the solvent. Additionally, duration of immersion test longer than 24 hours is not necessary.

For paper and cardboard applications, the sample preparation depends on the grammage of the paper and board substrate. The details are given in the table 4 below:

Table 4: Sample preparation dependent on grammage

<table>
<thead>
<tr>
<th>paper grammage [g/m²]</th>
<th>sample weight [g] for 200 ml of liquid simulant</th>
</tr>
</thead>
<tbody>
<tr>
<td>< 50</td>
<td>5</td>
</tr>
<tr>
<td>> 50</td>
<td>10</td>
</tr>
</tbody>
</table>

Specific test methods for DFC application

For some applications listed in Annex D it might be necessary to do additional testing, examples can be found in Annex E.

4.3. Analytical identification and quantification

Targeted analysis (IAS/NLS/NIAS)

The analytical approach to determine specific migration will depend on:

- the volatility of the substance(s)
- the polarity of the substance(s)
- the nature of the food or food simulant (e.g. aqueous or fatty)
- the level of determination (e.g. high or low)
- the functional groups of the substance(s) (considered to define the detection method)
Table 5: Sampling and Detection methods for analytical identification

<table>
<thead>
<tr>
<th>Method</th>
<th>Sample Introduction</th>
<th>Detection Method</th>
<th>Example Analytes of Interest*</th>
</tr>
</thead>
<tbody>
<tr>
<td>GC</td>
<td>HS (SPME) purge-and-trap</td>
<td>MS (by MSD) FID</td>
<td>monomers, residual solvent analysis glycols</td>
</tr>
<tr>
<td></td>
<td>liquid injection: hot split and splitless PTV backflush</td>
<td>MS (by MSD) FID MS/MS (tandem MS)</td>
<td>monomers, oligomers, plasticizers, photoinitiators, glycols, additives</td>
</tr>
<tr>
<td>LC</td>
<td>HPLC UHPLC**</td>
<td>DAD (UV-VIS) MS (q), TOF-MS MS/MS (tandem MS q-TOF MS/MS)</td>
<td>oligomers, photoinitiators, pAAs antioxidants, polymeric plasticizers, Additives</td>
</tr>
<tr>
<td>Trace Metal Analysis</td>
<td>liquid Injection</td>
<td>ICP-MS ICP-OES flame-AAS</td>
<td>Al, Ba, etc.</td>
</tr>
</tbody>
</table>

*Crossover between sampling methods and detection methods may occur for analytes of interest.
**The analyte of interest should be considered when choosing the appropriate ionization technique for MS detection. Electrospray ionization (ESI) provides the widest range of applicability including large molecules and thermally labile compounds. Atmospheric pressure chemical ionization (APCI) is well suited for compounds with aromatic structures and some lipids. Atmospheric pressure photo ionization (APPI) is well suited to nonpolar compounds.

Some analytical methods to determine quality and quantity of specific migrants in food simulants are described in the CEN Standards

- EN 13130, Parts 2-28.

The European Union Reference Laboratory for Food Contact Materials (EURL-FCM) provides on their website (https://ec.europa.eu/jrc/en/eurl/food-contact-materials) a collection of more than 400 analytical methods concerning overall migration and specific migration.

For targeted analysis of known organic compounds, gas chromatography or liquid chromatography, both with a mass spectrometric detector (GC-MS and LC-MS), are recommended for the majority of migrants.

Non-targeted analysis (NLS/NIAS)

This section deals with non-targeted NLS/NIAS screening. For the risk assessment of identified NIAS, please refer to the corresponding EuPIA Guidance [2].

When testing for NIAS there are two important questions that must be answered: what is the NIAS and how much is present? In determining the significance of a NIAS, both are important and interrelated, as the potential risk of a NIAS in a food packaging scenario is ultimately the risk to human health and this is determined by both the type and amount of the compound.

A NIAS is defined as a compound that is not intentionally added: this does not mean that it is unknown. A NIAS may be a compound that is expected to be present due to the production process, or a known
common contaminant, but equally it may be a compound that has not been observed before and is truly unknown.

Consequently, the analysis for NIAS is complex, as the precise identity of the material may be difficult to confirm, and reference standards may not be available for calibration. Analysis of raw materials can be helpful in the identification of NIAS for further migration testing.

Screening for non-intentionally added substances is routinely conducted by GC-MS. This is because the technique is specific, sensitive, and contains data that can help identify the components detected.

The routine method for identification using GC-MS is by comparison of acquired component mass spectra to either “in-house” user-generated libraries or commercially available libraries. Different types of mass spectrometers can give rise to spectral variation in the resultant mass spectrum, and therefore the use of a quadrupole mass spectrometer is recommended. The spectrometer scan range employed also influences spectral properties and therefore a range of m/z 20-650 is proposed (reference to DIN EN 15768 (2015)).

For confident identification of a “known” NIAS, the following guidance is appropriate: for full scan and selected ion monitoring (SIM) data, the relative intensities of the detected ions, as a percentage of the most abundant ion, should correspond to those of the reference standard at comparable concentrations measured under the same conditions (SANTE/11813/2017), with the tolerances given in Table 6.

Table 6 Recommended maximum tolerances

<table>
<thead>
<tr>
<th>Relative intensity (% of base peak)</th>
<th>EI-GC-MS (relative)</th>
</tr>
</thead>
<tbody>
<tr>
<td>> 50</td>
<td>± 10</td>
</tr>
<tr>
<td>> 20 to 50</td>
<td>± 15</td>
</tr>
<tr>
<td>> 10 to 20</td>
<td>± 20</td>
</tr>
<tr>
<td>≤ 10</td>
<td>± 50</td>
</tr>
</tbody>
</table>

A general guidance for library matching using the NIST MS Search Program is as follows: >900 – excellent match, 800-900 – good match, 700-800 – fair match. However, it should be noted that the library match alone is insufficient to confirm identity and should be double-checked by an experienced analyst with knowledge of substances found in the printing ink industry.

Quantification by GC-MS should be conducted by preparing a calibration curve with a reference sample of the NIAS. Where this is not possible, a quantitative estimation of the NIAS is usually conducted by reference to the response of another known compound deliberately introduced to the test solution at a known concentration i.e. an internal standard. There can be a significant error as a result of this type of calculation, however, as compounds can respond quite differently to one another in mass spectrometry. The associated error can be as much as a factor of 10. If a mass spectrometer is used for quantification of unknowns by relative response it is recommended to use full scan data.

There are standard methods that use multiple internal reference compounds to try to correct for these differences in MS response. It is recommended that, if agreement between laboratories upon migration figures is required, then efforts should be made to harmonize procedures and a common internal standard solution such as deuterated compounds should be adopted. Examples of such standards include, but are not limited to, d-tridecane or d-nonadecane.
An alternative to GC-MS quantitation is to use GC-FID. Flame Ionization Detectors (FID) are universal detectors which do not exhibit the large variation in response from chemical to chemical observed via MS detection, therefore the errors using this technique are more likely to be reduced.

For non-volatile NIAS it is necessary to evaluate samples using LC-MS, but this technique suffers from a number of disadvantages. LC-MS is a relatively "noisy" technique: it suffers from short term baseline instability due to instrument operating parameters which could potentially mask the presence of low concentration NIAS. As a result, any samples may require a significant concentration procedure before analysis. In addition, the variety of ionization techniques employed, and the solvents and additives used in chromatography, raise the potential for variable ionization (and therefore detection) of NIAS. Finally, some NIAS may not respond to ionization at all and therefore will remain undetectable via LC-MS.

In order to confidently screen samples for NIAS by LC-MS it may be necessary to run the sample multiple times using a combination of Electrospray Ionization (ESI) & Atmospheric Pressure Chemical Ionization (APCI), and using both positive and negative ion detection.

Identification by LC-MS is more complex than via GC-MS and might require the use of high-resolution and/or hyphenated techniques, such as MS-MS. As a result, LC-MS is better suited to the detection of "known" NIAS, as looking for and identifying unknowns could be a very protracted exercise and many laboratories are not equipped to deal with this.

Quantification using LC-MS is also prone to much larger variation than GC-MS due to unpredictable ionization efficiencies, therefore calibrating the system with the correct compound or a compound chemically very similar is essential to avoid extreme overestimation or underestimation.

An alternative to LC-MS quantitation is to use LC-CAD. Charged-aerosol detectors (CAD) are universal detectors which provide significantly greater consistency of response from chemical to chemical: errors from using this technique are estimated to be considerably lower than those from LC-MS.

4.4. Justified deviations from the recommended methods

Changes which do not occur under worst foreseeable conditions of use

The aim of the methods in this document is to provide a guideline reference for the execution of worst-case tests to assess whether a product is fit for purpose. However, whenever a method effectuates a physical or other change to the test sample, the test must be carried out under the worst foreseeable conditions of use in which these changes do not occur [13].

Situations in which the recommended methods are not suitable can be divided into (i) physical changes to the printed test substrate, and (ii) chemical changes to the migrating compounds. Known examples are given below.

Examples of physical changes to the printed test substrate

- Regulation (EU) No. 10/2011 specifies three different testing regimes (10 d at 40°C, 10 d at 50°C, and 10 d at 60°C) dependent on product storage conditions. The regulation also states that substrates should not be altered by the applied conditions [13]. Therefore, it is recommended to use 10d at 40°C and extrapolate to 10 d at 60°C where required using migration modelling. Higher temperatures can be used for migration testing if the substrate is not altered. For example ethanolic solutions used with polypropylene substrates (≤ 35 µm thickness) at 60°C can result in penetration of the film by the solvent, producing extraction rather
than migration testing. Similar changes are known to occur when other plastics are subjected to ethanolic solutions at 60°C.

- Acetic acid solutions cannot be used with aluminium foils due to the formation of aluminium acetate and resulting damage to the substrate.

- Olive / vegetable oils contain components which can penetrate silicone elastomer matrices, which results in an overestimation of migration compared to real food when using these simulants; the same applies to the simulants isooctane and 95% aq. ethanol. A proposed solution is to use MPPO which does not penetrate silicone elastomer matrices.

- For polyamide substrates, isooctane is the preferred worst-case simulant: 95% aq. ethanol solutions have the same polarity range as polyamide, leading to substrate damage.

- Swelling effects can occur e.g. when isooctane is in contact with polyolefins or when food simulants with high ethanol contents (50% or 95%) are in contact with polyesters, in particular at elevated temperatures (60°C).

- For some DFC applications 95% aq. ethanol is not suitable as a simulant due its possible degradation of the ink layer.

Examples of chemical changes to the migrating compounds

- Cases of the degradation or further reaction of photoinitiators during exposure to simulant solutions have been reported. For example, Irgacure 819 (CAS No. 162881-26-7) yields TPO-L (CAS No. 84434-11-7) in ethanolic solutions. Such conversions may cause false positive and/or false negative results if the chosen solution poorly simulates the properties of the real food.

- Deuterated benzophenone internal standards are known to undergo exchange reactions with non-deuterated species in some solutions.

- Acrylates may be transesterified in alcoholic solutions.

- Thermal decomposition of ink/coating components during analysis has been reported, producing detectable artefacts: notable examples include some pigments/pigment additives, polyurethanes, photoinitiators and ATBC/tributyl aconitate.

5. References

6. List of abbreviations

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>AAS</td>
<td>atomic absorption spectroscopy</td>
</tr>
<tr>
<td>APCI</td>
<td>atmospheric-pressure chemical ionization</td>
</tr>
<tr>
<td>APPI</td>
<td>atmospheric-pressure photoionization</td>
</tr>
<tr>
<td>aq.</td>
<td>aqueous</td>
</tr>
<tr>
<td>BOPP</td>
<td>biaxially oriented polypropylene</td>
</tr>
<tr>
<td>Bp</td>
<td>boiling point</td>
</tr>
<tr>
<td>CAD</td>
<td>charged-aerosol detector</td>
</tr>
<tr>
<td>d</td>
<td>day(s)</td>
</tr>
<tr>
<td>DAD</td>
<td>diode array detection</td>
</tr>
<tr>
<td>ESI</td>
<td>electrospray ionization</td>
</tr>
<tr>
<td>FID</td>
<td>flame ionization detector</td>
</tr>
<tr>
<td>GC</td>
<td>gas chromatography</td>
</tr>
<tr>
<td>q-TOF</td>
<td>quadrupole-time-of-flight detection with collision induced fragmentation</td>
</tr>
<tr>
<td>HPLC</td>
<td>high performance liquid chromatography</td>
</tr>
<tr>
<td>HS</td>
<td>headspace</td>
</tr>
<tr>
<td>ICP</td>
<td>inductively coupled plasma</td>
</tr>
<tr>
<td>LC</td>
<td>liquid chromatography</td>
</tr>
<tr>
<td>MPPO</td>
<td>modified poly (phenylene oxide)</td>
</tr>
<tr>
<td>mol. wt.</td>
<td>molecular weight</td>
</tr>
<tr>
<td>MS</td>
<td>mass spectrometer (detector)</td>
</tr>
<tr>
<td>OES</td>
<td>optical emission spectrometry</td>
</tr>
<tr>
<td>OPP</td>
<td>oriented polypropylene</td>
</tr>
<tr>
<td>PAA</td>
<td>primary aromatic amine(s)</td>
</tr>
<tr>
<td>PI</td>
<td>photoinitiator</td>
</tr>
<tr>
<td>PTV</td>
<td>programmable temperature vaporizer</td>
</tr>
<tr>
<td>SPME</td>
<td>solid-phase micro extraction</td>
</tr>
<tr>
<td>TOF</td>
<td>time of flight</td>
</tr>
<tr>
<td>UHPLC</td>
<td>ultra-high-performance LC</td>
</tr>
</tbody>
</table>
Annex A: Calculation of maximum possible migration; formula and example

The formula below is intended for calculations

- near the specific migration limit of compounds which are present at ppm levels in a coating
- in worst-case scenarios
- that are not limited to the Euro cube convention
- independent of the area used in the migration experiment

The formula can be rearranged to calculate the maximum tolerable content in an ink or coating from a given SML.

\[c_{\text{max}} = m_{\text{ink}} \cdot c_{\text{ink}} \cdot a_{\text{spec}} \cdot 0.01 \]

- \(c_{\text{max}} \): maximum content of a migrant in foodstuff in the worst case, in [µg/kg] i.e. [ppb]
- \(m_{\text{ink}} \): mass of liquid ink or coating applied to packaging in [g/m²]
- \(c_{\text{ink}} \): content of migrant in ink or coating in [ppm] i.e. [µg/g]
- \(a_{\text{spec}} \): specific surface area of foodstuff in [dm²/kg], is 6 dm²/kg for the EU cube*

The factor 0.01 comes from conversion of dm² to m², with 1 dm² = 0.01 m² or 100 dm² = 1 m².

Example. Does the content of compound A in ink or coating comply with the SML (worst case)?

compound A (not evaluated toxicologically) working quantification limit = 10 µg/kg (ppb)

4 g of ink or coating applied per m²

compound A content in ink or coating is 40 ppm

packaging complies with Euro cube

\[c_{\text{max}} [\mu g/kg] = m_{\text{ink}} [g/m^2] \cdot c_{\text{ink}} [\mu g/g] \cdot a_{\text{spec}} [dm^2/kg] \cdot 0.01 \]

\[= 4 \cdot 40 \cdot 6 \cdot 0.01 [\mu g/kg] \]

\[= 9.6 [\mu g/kg] \text{ (ppb)} \]

In the worst case, the maximum content of compound A in foodstuff would be slightly lower than the SML.

*For inkjet, there are some applications (product identifications/codes) where the print area is fixed while the overall packaging area might not be known. It is recommended to estimate the total amount of ink printed \((m_{\text{ink}}) \) for this application. The worst-case concentration in the food (based on the mass of a small candy bar, 25 g) can then be determined:

\[C_{\text{max}} = m_{\text{ink}} [g] \cdot c_{\text{ink}} [\mu g/g] / 0.025 kg \]
Annex B: Calculation of maximum possible migration: Digital printing applications

For digital printing applications producing articles with full ink coverage (many graphical and industrial end uses) the treatment outlined in Annex A is appropriate, with ink weight calculated as a function of film thickness (known for a given printing device) and ink density.

\[m_{\text{ink}} = f_{\text{ink}} \cdot \rho_{\text{ink}} \]

- \(m_{\text{ink}} \): mass of liquid ink or coating applied to packaging in \((g/m^2)\)
- \(f_{\text{ink}} \): film thickness of coating (\(\mu m\)).
- \(\rho_{\text{ink}} \): density of liquid ink or coating applied \((g/cm^3)\)

However, for some applications (e.g. continuous inkjet printing where the coverage of the ink on the substrate is limited), the mass of ink deposited per \(m^2\) \((m_{\text{ink}})\) is calculated from the number of drops deposited in the printed image and the mass of each drop, both of which are known for a given printing device.

\[m_{\text{ink}} = \frac{4}{3} \pi r^3 \cdot n \cdot \rho_{\text{ink}} / A \]

- \(m_{\text{ink}} \): mass of liquid ink or coating applied to packaging in \((g/m^2)\)
- \(r \): droplet radius (\(cm\))
- \(n \): number of drops printed
- \(\rho_{\text{ink}} \): density of liquid ink or coating applied \((g/cm^3)\)
- \(A \): area of packaging \((m^2)\)

The calculated mass can then be applied via the treatment in Annex A.
Annex C: Storage/Conditioning of print samples

Time / Temperature / Air humidity:
As described, conditioning of the aluminium-wrapped stacks of printed substrates should preferably be conducted at the customer's premises under realistic conditions. Alternatively, storage carried out in the laboratory should be conducted either according to the customer’s requirements, at ambient humidity for 6-10 d at 23±2 °C or according to conditions relating to real applications.

Pressure:
Preferably, a uniform pressure should be applied to the stack of two-dimensional substrates wrapped in aluminium foil. If no other data is available a minimum pressure of 1 kg/dm² should be applied to the stack, such that the substrates are in intimate contact – thus the whole area of the printed substrates to be analyzed should be subjected to pressure [15]. It has been shown that pressure does not have a major influence on the set-off. Higher pressure can be applied if deemed appropriate.

For stacks of three-dimensional objects, a pressure should be applied typical of real-life conditions without deforming the three-dimensional structure. A realistic contact between each substrate/object should be ensured.
Annex D: Typical examples of DFC application

The table below contains a non-exhaustive list of typical indicative examples. In real applications, the specific case needs to be considered.

Table 7 Examples of DFC applications

<table>
<thead>
<tr>
<th>Contact category</th>
<th>Contact time</th>
<th>Applications</th>
</tr>
</thead>
<tbody>
<tr>
<td>intentional</td>
<td>long term</td>
<td>Internal technology coatings like: antifog, anti-mist coating, slip agent, protection lacquer aluminium foil heat seal lacquer blister/dairy foil (inside ink + OPV) direct print inside retail pack (e.g. lucky winner codes) cold seal adhesives ice cones stored with biscuit (outside ink + OPV)</td>
</tr>
<tr>
<td></td>
<td>short term</td>
<td>paper cups</td>
</tr>
<tr>
<td></td>
<td></td>
<td>clamshell (fast food) boxes (inside) Fries sleeve</td>
</tr>
<tr>
<td></td>
<td></td>
<td>coffee capsules</td>
</tr>
<tr>
<td>reasonably foreseeable</td>
<td>long term</td>
<td>confectionary inlays / chocolate box inserts tea bags with cardboard tags muffin cups (see also the paragraph "specific methods") self-adhesive labels/ fruit labels</td>
</tr>
<tr>
<td></td>
<td>short term</td>
<td>pizza boxes exterior fast food boxes / sandwich board(outside) burger/sandwich wrapper bakery bags</td>
</tr>
<tr>
<td></td>
<td></td>
<td>tray liners</td>
</tr>
<tr>
<td></td>
<td></td>
<td>place mats</td>
</tr>
<tr>
<td></td>
<td></td>
<td>printed table clothes</td>
</tr>
<tr>
<td></td>
<td></td>
<td>paper kitchen towels</td>
</tr>
<tr>
<td></td>
<td></td>
<td>napkins</td>
</tr>
</tbody>
</table>
Annex E: Specific test methods for DFC application

Similar to the testing conditions in 4.2.2., the worst-case simulants and testing conditions specified below should be used, if the real case is not known explicitly, or if a worst-case testing is needed. Otherwise it is recommended to choose simulants and testing conditions that resemble the real case as close as possible.

- **thermo-extraction for muffin cups**

 Food contact side MPPO migration test conducted at elevated temperature with subsequent ambient temperature incubation for 3 d. Migration cells are incubated in the oven at elevated temperatures to simulate baking (180°C up to 60 minutes)

- **paper straws**

 Cut one straw into pieces of length ≤ 1 cm. Weigh ±1 gram of straw pieces into a 50 mL conical glass flask with a wide neck ground glass stopper and note down the amount weighed. Add 20 mL of simulant and incubate at the temperature indicated in Table 5. Make sure that the straws are fully immersed for the duration of the test. If necessary, filter the extract and adjust volume to 25 mL. After quantification, calculate back to the amount of the substance per paper straw.

<table>
<thead>
<tr>
<th>Simulant</th>
<th>Water Extract for PAA analysis</th>
<th>Water</th>
<th>3% Acetic Acid</th>
<th>50% Ethanol</th>
</tr>
</thead>
<tbody>
<tr>
<td>Temperature (°C)</td>
<td>23</td>
<td>23 or 60</td>
<td>23</td>
<td>23 or 60</td>
</tr>
<tr>
<td>Time (hours)</td>
<td>24</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
</tbody>
</table>

- **PAA analysis by migration or immersion testing**

 The Plastic regulation (EU) N° 10/2011 requires that “Plastic materials and articles shall not release primary aromatic amines, excluding those appearing in Table 1 of Annex I, in a detectable quantity into food or food simulant. The maximum detection limit is 0.010 mg of substance per kg of food or food simulant. The detection limit applies to the sum of primary aromatic amines released. For PAs classified as CMR 1A or 1B according to Regulation (EC) No 1272/2008, a migration limit of 0.002 mg/kg applies.

 For further details, refer to BfR recommendations XXXVI on paper and board for food contact and BfR Opinion No 021/2014 as of 24 July 2013 - The French information note 2006-156 of DGCCRF section on paper and cardboard - The Dutch Commodities Act (Packaging and Consumer articles) Regulation, chapter II.

 When the pigments used in the tested inks may contain residual PAA, it is recommended to measure their content, obtained by migration or extraction, in the simulants. PAAs can be determined in a cold-water extract that is prepared according to the current version of the DIN EN 645:1994-01.
Recommended conditions for migration testing:
- 2 dm² for 100 mL or a minimum ratio of 1 ml :1 cm² according to CEN standard EN 13130-1
- use appropriate food simulant
- 10 d at 60°C (can be adapted according to final application)

Recommended conditions for immersion testing:
- 10 g of samples in final volume of 250 mL of simulant or equivalent ratio (see EN 645 for details)
- distilled water
- 24 h at 23°C

Recommended analytical methods:

Analytical methods using HPLC-MS/MS involving positive electrospray ionization (ESI+) are commonly used, as described through scientific articles. Additionally, a European standard was published in May 2017. This document describes two representative methods to determine the extractable amount of 22 specific PAA in a water extract of paper, board and pulp samples using a HPLC-MS/MS method. Initially applicable for determination of the 22 PAA mentioned in the annex of Directive 2002/61/EC, this method could be extended to analysis of further amines, as soon as appropriate validation is provided.

3 EN 17163 (2019-05); Pulp, paper and board - Determination of primary aromatic amines (PAA) in a water extract by a LC/MS/MS method.